
UNIT-VI
PART - A

Process Automation: Tools: Automation
Building Blocks, The Project Environment.

Tools : Automation Building Blocks

• Many tools are available to automate the
software development process.

• Most of the core software development tools
map closely to one of the process workflows,
as illustrated in below figure.

• Each of the process workflows has a distinct
need for automation support. In some cases,
it is necessary to generate an artifact; in
others, it is needed for simple bookkeeping.

Figure: Typical automation and tool components that support the process workflows

Management

• There are many opportunities for automating the
project planning and control activities of the
management workflow.

• Software cost estimation tools and WBS tools are
useful for generating the planning artifacts.

• For managing against a plan, workflow
management tools and a software project control
panel that can maintain an on-line version of the
status assessment are advantageous.

Environment

• Configuration management and version
control are essential in a modern iterative
development process.

Requirements

• Conventional approaches decomposed system
requirements into subsystem requirements,
subsystem requirements into component
requirements, and component requirements into
unit requirements.

• The equal treatment of all requirements drained
away engineering hours from the driving
requirements, then wasted that time on
paperwork associated with detailed traceability
that was inevitably discarded later as the driving
requirements and subsequent design
understanding evolved.

Requirements

• The ramifications of this approach on the
environment’s support for requirements management
are twofold:

1. The recommended requirements approach is
dependent on both textual and model-based
representations. Consequently, the environment
should provide integrated document automation and
visual modeling for capturing textual specifications
and use case models.

2. Traceability between requirements and other artifacts
needs to be automated. The extent of traceability
among sets is the subject of along-standing debate.

Design

• The tools that support the requirements, design,
implementation, and assessment workflows are
usually used together.

• The primary support required for the design
workflow is visual modeling, which is used for
capturing design models, presenting them in
human-readable format, and translating them
into source code.

• An architecture-first and demonstration-based
process is enabled by existing architecture
components and middleware.

Implementation

• The implementation workflow relies primarily
on a programming environment (editor,
compiler, debugger, linker, run time) but must
also include substantial integration with the
change management tools, visual modeling
tools, and test automation tools to support
productive iteration.

Assessment and Deployment

• The assessment workflow requires all the tools just
discussed as well as additional capabilities to support
test automation and test management.

• To increase change freedom, testing and document
production must be mostly automated.

• Defect tracking is another important tool that supports
assessment: It provides the change management
instrumentation necessary to automate metrics and
control release baselines.

• It is also needed to support the deployment workflow
throughout the life cycle.

• The Project Environment

– Round-Trip Engineering

– Change Management

• Software Change Orders

• Configuration Baseline

• Configuration Control Board

– Infrastructures

• Organization Policy

• Organization Environment

– Stakeholder Environments

The Project Environment

• The project environment artifacts evolve
through three discrete states:

– The Prototyping Environment

– The Development Environment

– The Maintenance Environment

The Project Environment

1. The Prototyping Environment includes an architecture
test bed for prototyping project architectures to evaluate
trade-offs during the inception and elaboration phases of
the life cycle.

• This informal configuration of tools should be capable of
supporting the following activities:
– Performance trade-offs and technical risk analyses
– Make/buy trade-offs and feasibility studies for commercial

products
– Fault tolerance/dynamic reconfiguration trade-offs
– Analysis of the risks associated with transitioning to full-scale

implementation
– Development of test scenarios, tools, and instrumentation

suitable for analyzing the requirements

The Project Environment

2. The Development Environment should include a
full suite of development tools needed to
support the various process workflows and to
support round-trip engineering to the maximum
extent possible.

3. The Maintenance Environment should typically
coincide with a mature version of the
development environment.
– In some cases, the maintenance environment may

be a subset of the development environment
delivered as one of the project’s end products.

The Project Environment

• There are four important environment disciplines that
are critical to the management context and the success
of a modern iterative development process:

1. Tools must be integrated to maintain consistency and
traceability. Round-trip engineering is the term used
to describe this key requirement for environments
that support iterative development.

2. Change management must be automated and
enforced to manage multiple iterations and to enable
change freedom. Change is the fundamental primitive
of iterative development.

The Project Environment

3. Organizational infrastructures enable project
environments to be derived from a common
base of processes and tools. A common
infrastructure promotes interproject
consistency, reuse of training, reuse of lessons
learned, and other strategic improvements to
the organization’s metaprocess.

4. Extending automation support for stakeholder
environments enables further support for
paperless exchange of information and more
effective review of engineering artifacts.

Round-Trip Engineering

• As the software industry moves into
maintaining different information sets for the
engineering artifacts, more automation
support is needed to ensure efficient and
error-free transition of data from one artifact
to another.

• Round-trip engineering is the environment
support necessary to maintain consistency
among the engineering artifacts.

Round-Trip Engineering

• Below figure depicts some important transitions
between information repositories.

• The automated translation of design models to source
code (both forward and reverse engineering) is fairly
well established.

• The automated translation of design models to process
(distribution) models is also becoming straightforward
through technologies such as ActiveX and the Common
Object Request Broker Architecture(CORBA).

• Compilers and linkers have long provided automation
of source code into executable code.

Figure: Round-trip engineering

Round-Trip Engineering

• The primary reason for round-trip engineering is
to allow freedom in changing software
engineering data sources.

• This configuration control of all the technical
artifacts is crucial to maintaining a consistent and
error-free representation of the evolving product.

• It is not necessary to have bi-directional
transitions in all cases.

• Reverse engineering of poorly constructed legacy
source code into an object-oriented design model
may be counterproductive.

Round-Trip Engineering

• Translation from one data source to another
may not provide 100% completeness.

• For example, translating design models into
C++ source code may provide only the
structural and declarative aspects of the
source code representation.

• The code components may still need to be
fleshed out with the specifics of certain object
attributes or methods.

Change Management

• Change management is as critical to iterative processes as
planning.

• Tracking changes in the technical artifacts is crucial to
understanding the true technical progress trends and
quality trends toward delivering an acceptable end product
or interim release.

• In conventional software management processes, baseline
configuration management techniques for technical
artifacts were predominantly a late life-cycle activity.

• In modern process—in which requirements, design, and
implementation set artifacts are captured in rigorous
notations early in the life cycle and are evolved through
multiple generations—change management has become
fundamental to all phases and almost all activities.

Software Change Orders

• The atomic unit of software work that is
authorized to create, modify, or obsolesce
components within a configuration baseline is
called a software change order (SCO).

• Software change orders are a key mechanism for
partitioning, allocating, and scheduling software
work against an established software baseline
and for assessing progress and quality.

• The example SCO shown in below figure is a good
starting point for describing a set of change
primitives.

Software Change Orders

• The basic fields of the SCO are title,
description, metrics, resolution, assessment,
and disposition.

– Title - The title is suggested by the originator and
is finalized upon acceptance by the configuration
control board (CCB). This field should include a
reference to an external software problem report
if the change was initiated by an external person
(such as a user).

Software Change Orders

– Description - The problem description includes
the name of the originator, date of origination,
CCB-assigned SCO identifier, and relevant version
identifiers of related support software.

– Metrics - The metrics collected for each SCO are
important for planning, for scheduling, and for
assessing quality improvement. Change categories
are type 0 (critical bug), type 1 (bug), type 2
(enhancement), type 3 (new feature), and type 4
(other).

Software Change Orders

– Resolution - This field includes the name of the
person responsible for implementing the change,
the components changed, the actual metrics, and
a description of the change.

– Assessment - This field describes the assessment
technique as either inspection, analysis,
demonstration, or test. Where applicable, it
should also reference all existing test cases and
new test cases executed, and it should identify all
different test configurations, such as platforms,
topologies, and compilers.

Software Change Orders

– Disposition - The SCO is assigned one of the following states by
the CCB:
• Proposed : written, pending CCB review
• Accepted : CCB-approved for resolution
• Rejected : closed, with rationale, such as not a problem, duplicate,

obsolete change, resolved by another SCO
• Archived : accepted but postponed until a later release
• In progress : assigned and actively being resolved by the development

organization
• In assessment : resolved by the development organization; being

assessed by a test organization
• Closed : completely resolved, with the concurrence of all CCB

members

– A priority and release identifier can also be assigned by the CCB
to guide the prioritization and organization of concurrent
development activities.

Configuration Baseline

• A configuration baseline is a named collection
of software components and supporting
documentation that is subject to change
management and is upgraded, maintained,
tested, statused, and obsolesced as a unit.

• With complex configuration management
systems, there are many desirable project-
specific and domain-specific standards.

Configuration Baseline

• There are generally two classes of baselines: external
product releases and internal testing releases.

• A configuration baseline is a named collection of
components that is treated as a unit.

• It is controlled formally because it is a packaged
exchange between groups.

• For example, the development organization may
release a configuration baseline to the test
organization or even to itself.

• A project may release a configuration baseline to the
user community for beta testing.

Configuration Baseline

• Generally, three levels of baseline releases are required for
most systems: major, minor, and interim.

• Each level corresponds to a numbered identifier such as
N.M.X, where N is the major release number, M is the
minor release number, and X is the interim release
identifier.

• A major release represents a new generation of the product
or project.

• A minor release represents the same basic product but with
enhanced features, performance, or quality.

• An interim release corresponds to a developmental
configuration that is intended to be transient.

• Below figure shows examples of some release name
histories for two different situations.

Figure: Example release histories for a typical project and a typical product

Configuration Baseline

• Once software is placed in a controlled
baseline, all changes are tracked. A distinction
must be made for the cause of a change.
Change categories are as follows:

– Type 0: critical failures, which are defects that are
nearly always fixed before any external release. In
general, these sorts of changes represent
showstoppers that have an impact on the usability
of the software in its critical use cases.

Configuration Baseline

– Type 1: a bug or defect that either does not impair
the usefulness of the system or can be worked
around. Such errors tend to correlate to nuisances
in critical use cases or to serious defects in
secondary use cases that have a low probability of
occurrence.

– Type 2: a change that is an enhancement rather
than a response to a defect. Its purpose is typically
to improve performance, testability, usability, or
some other aspect of quality that represents good
value engineering.

Configuration Baseline

– Type 3: a change that is necessitated by an update to
the requirements. This could be new features or
capabilities that are outside the scope of the current
vision and business case.

– Type 4: changes that are not accommodated by the
other categories. Examples include documentation
only or a version upgrade to commercial components.

• Below table provides examples of these changes
in the context of two different project domains: a
large-scale, reliable air traffic control system and
a packaged software development tool.

Table: Representative examples of changes at opposite ends of the project spectrum

Configuration Control Board

• A CCB is a team of people that functions as the decision
authority on the content of configuration baselines.

• A CCB usually includes the software manager, software
architecture manager, software development manager,
software assessment manager, and other stakeholders
(customer, software project manager, systems engineer,
user) who are integral to the maintenance of a controlled
software delivery system.

• While CCBs typically take action through board meetings,
on-line distribution, concurrence, and approval of CCB
actions may make sense under many project
circumstances.

Configuration Control Board

• The operational concept of an iterative
development process must include
comprehensive and rigorous change
management of the evolving software baselines.

• The fundamental process for controlling the
software development and maintenance
activities is described through the sequence of
states traversed by an SCO.

• The [bracketed] words constitute the state of an
SCO transitioning through the process.

Configuration Control Board

– [Proposed]. A proposed change is drafted and
submitted to the CCB. The proposed change must
include a technical description of the problem and an
estimate of the resolution effort.

– [Accepted, archived, or rejected]. The CCB assigns a
unique identifier and accepts, archives, or rejects each
proposed change. Acceptance includes the change for
resolution in the next release; archiving accepts the
change but postpones it for resolution in a future
release; and rejection judges the change to be without
merit, redundant with other proposed changes, or out
of scope.

Configuration Control Board

– [In progress]. The responsible person analyzes, implements,
and tests a solution to satisfy the SCO. This task includes
updating documentation, release notes, and SCO metrics
actuals, and submitting new SCOs, if necessary. Upon achieving
a complete solution, the responsible person completes the
resolution section of the SCO and submits it to the independent
test team for assessment.

– [In assessment]. The independent test team assesses whether
the SCO is completely resolved. When the independent test
team deems the change to be satisfactorily resolved, the SCO is
submitted to the CCB for final disposition and closure.

– [Closed]. When the development organization, independent
test organization, and CCB concur that the SCO is resolved, it is
transitioned to a closed status.

Infrastructures

• From a process automation perspective, the
organization’s infrastructure provides the
organization’s capital assets, including two key
artifacts: a policy that captures the standards for
project software development processes, and an
environment that captures an inventory of tools.

• These tools are the automation building blocks
from which project environments can be
configured efficiently and economically.

Organization Policy

• The organization policy is the defining document
for the organization’s software policies. In any
process assessment, this is the tangible(clarity)
artifact that says what you do.

• From this document, reviewers should be able to
question and review projects and personnel and
determine whether the organization does what it
says.

• Below figure shows a general outline for an
organizational policy.

Figure: Organization policy outline

Organization Environment

• The organization environment for automating
the default process will provide many of the
answers to how things get done as well as the
tools and techniques to automate the process
as much as practical.

• Some of the typical components of an
organization’s automation building blocks are
as follows:

Organization Environment

– Standardized tool selections (through investment by the
organization in a site license or negotiation of a favorable
discount with a tool vendor so that project teams are
motivated economically to use that tool), which promote
common workflows and a higher ROI on training.

– Standard notations for artifacts, such as UML for all design
models, or Ada95 for all custom-developed, reliability-
critical implementation artifacts.

– Tool adjuncts such as existing artifact templates
(architecture description, evaluation criteria, release
descriptions, status assessments) or customizations

– Activity templates (iteration planning, major milestone
activities, configuration control boards)

Stakeholder Environments

• The transition to a modern iterative development
process with supporting automation should not be
restricted to the development team.

• Many large-scale contractual projects include people in
external organizations that represent other
stakeholders participating in the development process.

• They might include procurement agency contract
monitors, end-user engineering support personnel,
third-party maintenance contractors, independent
verification and validation contractors, representatives
of regulatory agencies, and others.

Stakeholder Environments

• These stakeholder representatives also need
access to development environment resources
so that they can contribute value to the
overall effort.

• If an external stake-holder team has no
environment resources for accepting on-line
products and artifacts, the only vehicle for
information exchange is paper.

Stakeholder Environments

• An on-line environment accessible by the
external stakeholders allows them to participate
in the process as follows:
– Accept and use executable increments for hands-on

evaluation

– Use the same on-line tools, data, and reports that the
software development organization uses to manage
and monitor the project

– Avoid excessive travel, paper interchange delays,
format translations, paper and shipping costs, and
other overhead costs

Stakeholder Environments

• Below figure illustrates some of the new opportunities for value-
added activities by external stakeholders in large contractual
efforts.

• There are several important reasons for extending development
environment resources into certain stakeholder domains.
– Technical artifacts are not just paper. Electronic artifacts in rigorous

notations such as visual models and source code are viewed far more
efficiently by using tools with smart browsers.

– Independent assessments of the evolving artifacts are encouraged by
electronic read-only access to on-line data such as configuration
baseline libraries and the change management database. Reviews and
inspections, breakage/rework assessments, metrics analyses, and
even beta testing can be performed independently of the
development team.

– Even paper documents should be delivered electronically to reduce
production costs and turnaround time.

Figure: Extending environments into stakeholder domains

Stakeholder Environments

• Once environment resources are electronically
accessible by stakeholders, continuous and expedient
feedback is much more efficient, tangible, and useful.

• In implementing such a shared environment, it is
important for development teams to create an open
environment and provide adequate resources that
accommodate customer access.

• It is also important for stakeholders to avoid abusing
this access, to participate by adding value, and to avoid
interrupting development.

• Internet and intranet technology is making paperless
environments economical.

